Efficient synthesis of functionalized dihydroquinolines, quinolines and dihydrobenzo[b]azepine via an iron(III) chloride-catalyzed intramolecular alkyne-carbonyl metathesis of alkyne tethered 2-amino benzaldehyde/acetophenone derivatives.

نویسندگان

  • Swapnadeep Jalal
  • Krishnendu Bera
  • Soumen Sarkar
  • Kartick Paul
  • Umasish Jana
چکیده

In this study we have developed an efficient synthesis of 1,2-dihydroquinoline and dihydrobenzo[b]azepine derivatives involving the iron(III) chloride intramolecular alkyne-carbonyl metathesis reaction for the first time. Various functionalized 1,2-dihydroquinolines and dihydrobenzo[b]azepines were prepared from easily accessible substrates in the presence of environmentally friendly and inexpensive iron(III) chloride (10 mol%) under mild conditions. The method is applicable to a wide range of substrates containing different functional groups and furnishing products in good to excellent yields. This methodology was further extended to the one-pot synthesis of 3-acyl quinolines via alkyne-carbonyl metathesis/detosylation/aromatization of N-propargyl-2-aminobenzaldehyde/acetophenone derivatives by the addition of NaOH/EtOH. While many Lewis acid and Brønsted acid catalysts were investigated, anhydrous iron(III) chloride turned out to be the best catalyst for this transformation.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Isocanthine Synthesis via Rh(III)-Catalyzed Intramolecular C-H Functionalization.

An efficient synthesis of substituted isocanthines has been achieved using an intramolecular Rh(III)-catalyzed C-H functionalization of alkyne-tethered indoles in the presence of catalytic tris(acetonitrile)pentamethylcyclopentadienylrhodium(III) hexafluoroantimonate and stoichiometric copper(II) acetate. This isocanthine synthesis tolerates a variety of electronically diverse 5- or 6-substitut...

متن کامل

Enantioselective synthesis of 2,5-dihydrobenzo[b]azepine derivatives via iridium-catalyzed asymmetric allylic amination with 2-allylanilines and ring-closing-metathesis reaction.

Iridium-catalyzed asymmetric allylic amination of allylic carbonates with 2-allylanilines was realized. With a catalyst generated from 2 mol% of [Ir(dbcot)Cl](2) (dbcot = dibenzo[a,e]cyclooctatetraene) and 4 mol% of phosphoramidite ligand (L3), the amination products were obtained in up to 99% yield and 99% ee. Subjecting amination products to trifluoroacetyl protection and ring-closing-metathe...

متن کامل

Construction of cyclic enones via gold-catalyzed oxygen transfer reactions

During the last decade, gold-catalyzed reactions have become a tour de force in organic synthesis. Recently, the gold-, Brønsted acid- or Lewis acid-catalyzed oxygen transfer from carbonyl to carbon-carbon triple bond, the so-called alkyne-carbonyl metathesis, has attracted much attention because this atom economical transformation generates α,β-unsaturated carbonyl derivatives which are of gre...

متن کامل

Efficient procedure for the synthesis of quinoline derivatives by NbCl5.PEG and NbCl5 in glycerol as green solvent

Quinolines, an important class of potentially bioactive compounds, have been synthesized by treatment of O-aminoarylketones and carbonyl compounds utilizing niobium (V) chloride / polyethylenglycole(NbCl5.PEG) and niobium(V)chloride (NbCl5) as available and inexpensive catalysts. The quinoline derivatives were prepared in glycerol, an excellent solvent in terms of environmental impact, with hig...

متن کامل

N-Sulfonylketenimines as Useful Synthons in a Novel Synthesis of Functionalized 2-Oxoindoline Derivatives

The synthesis of a novel class of 2-oxoindolin-3-ylidene-(1-arylhydrazinyl)-2-aryl(alkyl)ethylidene derivativesvia a copper-catalyzed tandem reaction of isatin, arylhydrazines, sulfonyl azides and terminal alkynes is described.

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Organic & biomolecular chemistry

دوره 12 11  شماره 

صفحات  -

تاریخ انتشار 2014